IO

Pipeline functions

# TensorFlow.train.add_queue_runnerFunction.

add_queue_runner(runner::QueueRunner)

Manually adds a queue runner to the graph's collection of queue runners. All runners in the collection will be executed in parallel when start_queue_runners is invoked.

# TensorFlow.train.start_queue_runnersFunction.

start_queue_runners(session::Session)

Run all queue runners in parallel that were previously added to the graph's collection of queue runners via add_queue_runner.

Args:

  • session: The TensorFlow session containing the queues

# TensorFlow.train.range_input_producerFunction.

range_input_producer(limit; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)

Produces the integers from 1 to limit in a queue.

Args:

  • limit: Inclusive upper bound on the endpoint of the range of integers to produce
  • num_epochs: Number of times to produce the integers.
  • do_shuffle
  • seed
  • capacity

# TensorFlow.train.input_producerFunction.

input_producer(input; element_shape=nothing, num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)

# TensorFlow.train.string_input_producerFunction.

string_input_producer(string_tensors; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)

# TensorFlow.train.shuffle_batchFunction.

shuffle_batch(tensors, batch_size; capacity=32, enqueue_many=false, shapes=nothing, dynamic_pad=false, allow_smaller_final_batch=false)

# TensorFlow.train.QueueRunnerType.

QueueRunner

Represents an object that continually enqueues elements to a TensorFlow queue in parallel with other operations.

# TensorFlow.train.create_threadsFunction.

create_threads(runner::QueueRunner, session::Session)

Creates tasks that run the enqueue operations in runner in parallel.

Readers

WholeFileReader
TextLineReader
read