IO
Pipeline functions
#
TensorFlow.train.add_queue_runner
— Function.
add_queue_runner(runner::QueueRunner)
Manually adds a queue runner to the graph's collection of queue runners. All runners in the collection will be executed in parallel when start_queue_runners
is invoked.
#
TensorFlow.train.start_queue_runners
— Function.
start_queue_runners(session::Session)
Run all queue runners in parallel that were previously added to the graph's collection of queue runners via add_queue_runner
.
Args:
- session: The TensorFlow session containing the queues
#
TensorFlow.train.range_input_producer
— Function.
range_input_producer(limit; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
Produces the integers from 1 to limit
in a queue.
Args:
- limit: Inclusive upper bound on the endpoint of the range of integers to produce
- num_epochs: Number of times to produce the integers.
- do_shuffle
- seed
- capacity
#
TensorFlow.train.input_producer
— Function.
input_producer(input; element_shape=nothing, num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
#
TensorFlow.train.string_input_producer
— Function.
string_input_producer(string_tensors; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
#
TensorFlow.train.shuffle_batch
— Function.
shuffle_batch(tensors, batch_size; capacity=32, enqueue_many=false, shapes=nothing, dynamic_pad=false, allow_smaller_final_batch=false)
#
TensorFlow.train.QueueRunner
— Type.
QueueRunner
Represents an object that continually enqueues elements to a TensorFlow queue in parallel with other operations.
#
TensorFlow.train.create_threads
— Function.
create_threads(runner::QueueRunner, session::Session)
Creates tasks that run the enqueue operations in runner
in parallel.
Readers
WholeFileReader TextLineReader read