MNIST tutorial
This tutorial is strongly based on the official TensorFlow MNIST tutorial. We will classify MNIST digits, at first using simple logistic regression and then with a deep convolutional model.
Read through the official tutorial! Only the differences from the Python version are documented here.
Load MNIST data
The DataLoader
API provided in "examples/mnist_loader.jl" has some simple code for loading the MNIST dataset, based on the MNIST.jl package.
loader = data_loader()
Start TensorFlow session
using TensorFlow sess = Session()
Building a softmax regression model
Placeholders
x = placeholder(Float32) y = placeholder(Float32)
Variables
W = Variable(zeros([784, 10])) b = Variable(zeros([10])) run(sess, initialize_all_variables())
Predicted Class and Loss Function
y = nn.softmax(x*W + b) cross_entropy = reduce_mean(-reduce_sum(y_ .* log(y), reduction_indices=[2]))
Note several differences from the Python version of the tutorial:
- Python uses
tf.matmul
for matrix multiplication and*
for element-wise multiplication of tensors in the computation graph. Julia uses*
for matrix multiplication and.*
for element-wise multiplication. - The reduction index for the loss term is 1 in the Python version, but the Julia API assumes 1-based indexing to be consistent with the rest of Julia and so 2 is used.
Train the model
train_step = train.minimize(train.GradientDescentOptimizer(.00001), cross_entropy) for i in 1:1000 batch = next_batch(loader, 100) run(sess, train_step, Dict(x=>batch[1], y_=>batch[2])) end
Evaluate the model
correct_prediction = indmax(y, 2) .== indmax(y_, 2) accuracy=reduce_mean(cast(correct_prediction, Float32)) testx, testy = load_test_set() println(run(sess, accuracy, Dict(x=>testx, y_=>testy)))
Build a multi-layer convolutional network
There are no significant differences from the Python version, so the entire code is presented here:
# using TensorFlow using Distributions include("mnist_loader.jl") loader = DataLoader() session = Session(Graph()) function weight_variable(shape) initial = map(Float32, rand(Normal(0, .001), shape...)) return Variable(initial) end function bias_variable(shape) initial = fill(Float32(.1), shape...) return Variable(initial) end function conv2d(x, W) nn.conv2d(x, W, [1, 1, 1, 1], "SAME") end function max_pool_2x2(x) nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], "SAME") end x = placeholder(Float32) y_ = placeholder(Float32) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = reshape(x, [-1, 28, 28, 1]) h_conv1 = nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = reshape(h_pool2, [-1, 7*7*64]) h_fc1 = nn.relu(h_pool2_flat * W_fc1 + b_fc1) keep_prob = placeholder(Float32) h_fc1_drop = nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = nn.softmax(h_fc1_drop * W_fc2 + b_fc2) cross_entropy = reduce_mean(-reduce_sum(y_.*log(y_conv), reduction_indices=[2])) train_step = train.minimize(train.AdamOptimizer(1e-4), cross_entropy) correct_prediction = indmax(y_conv, 2) .== indmax(y_, 2) accuracy = reduce_mean(cast(correct_prediction, Float32)) run(session, initialize_all_variables()) for i in 1:1000 batch = next_batch(loader, 50) if i%100 == 1 train_accuracy = run(session, accuracy, Dict(x=>batch[1], y_=>batch[2], keep_prob=>1.0)) info("step $i, training accuracy $train_accuracy") end run(session, train_step, Dict(x=>batch[1], y_=>batch[2], keep_prob=>.5)) end testx, testy = load_test_set() test_accuracy = run(session, accuracy, Dict(x=>testx, y_=>testy, keep_prob=>1.0)) info("test accuracy $test_accuracy")