IO
Pipeline functions
TensorFlow.train.add_queue_runner — Function.add_queue_runner(runner::QueueRunner)
Manually adds a queue runner to the graph's collection of queue runners. All runners in the collection will be executed in parallel when start_queue_runners is invoked.
TensorFlow.train.start_queue_runners — Function.start_queue_runners(session::Session)
Run all queue runners in parallel that were previously added to the graph's collection of queue runners via add_queue_runner.
Args:
session: The TensorFlow session containing the queues
TensorFlow.train.range_input_producer — Function.range_input_producer(limit; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
Produces the integers from 1 to limit in a queue.
Args:
limit: Inclusive upper bound on the endpoint of the range of integers to producenum_epochs: Number of times to produce the integers.do_shuffle: Iftrue, shuffle the inputs each epoch.seed: Seed to use for the RNG ifdo_shuffleistrue.capacity: Sets the queue capacity. Default is 32.
TensorFlow.train.input_producer — Function.input_producer(input; element_shape=nothing, num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
Outputs the rows of input to a queue for input pipelining.
Args:
input: ATensorwith the rows to produce.element_shape: The shape of the input rows, in case it can't be inferred. Defaults tonothing.num_epochs: Number of times to produce each row. If unspecified (default),input_producercan produce each row an unlimited number of times.do_shuffle: Iftrue, shuffle the inputs each epoch.seed: Seed to use for the RNG ifdo_shuffleistrue.capacity: Sets the queue capacity. Default is 32.
TensorFlow.train.string_input_producer — Function.string_input_producer(string_tensors; num_epochs=nothing, do_shuffle=true, seed=0, capacity=32)
Output strings to a queue for an input pipeline.
Args:
string_tensor: A one dimensionalTensorof strings to produce.num_epochs: Number of times to produce the strings.do_shuffle: Iftrue, shuffle the inputs each epoch.seed: Seed to use for the RNG ifdo_shuffleistrue.capacity: Sets the queue capacity. Default is 32.
TensorFlow.train.shuffle_batch — Function.shuffle_batch(tensors, batch_size; capacity=32, enqueue_many=false, shapes=nothing, dynamic_pad=false, allow_smaller_final_batch=false)
Create batches by randomly shuffling tensors.
Args:
tensors: A list of tensors to enqueue.batch_size: The batch size which will be pulled from the queue.capacity: Sets the queue capacity. Default is 32.dynamic_pad: Iftruealltensorswill be padded on unknown dimensions tobatch_size. Otherwisetensorsshapes must be fully known. Currently onlyfalseis supported.enqueue_many: Iffalse,tensorsrepresents a single example. Otherwisetensorsrepresents a batch of examples. Currently onlyfalseis supported.shapes: The shapes for each example. Defaults to the inferred shapes fromtensors.allow_smaller_final_batch: Iftrue(defaultfalse), the final batch is allowed to be smaller than the other batches if there are not enough samples remaining.
TensorFlow.train.QueueRunner — Type.QueueRunner
Represents an object that continually enqueues elements to a TensorFlow queue in parallel with other operations.
TensorFlow.train.create_threads — Function.create_threads(runner::QueueRunner, session::Session)
Creates tasks that run the enqueue operations in runner in parallel.
Readers
io.WholeFileReader
io.TextLineReader
read