Operations
See the official TensorFlow documentation for a complete description of these operations.
Basic operations
placeholder
constant
concat
stack
split
expand_dims
argmin
argmax
add_n
one_hot
random_uniform
random_normal
Variables
Variable
global_variables_initializer
variable_scope
get_variable
ConstantInitializer
assign
assign_add
assign_sub
scatter_update
Reductions
reduce_sum
reduce_prod
reduce_min
reduce_max
reduce_all
reduce_any
reduce_mean
Comparisons
equal
not_equal
less
less_equal
greater
greater_equal
select
where
Images
image.decode_jpeg
image.encode_jpeg
image.decode_png
image.encode_png
image.resize_images
image.central_crop
Neural networks
Convolutions
TensorFlow.Ops.conv2d
— Function. conv2d(input, filter; use_cudnn_on_gpu=true, data_format=NHWC, dilations=[1, 1, 1, 1])
TensorFlow.Ops.max_pool
— Function. max_pool(input; data_format=NHWC)
Embeddings
TensorFlow.nn.embedding_lookup
— Function.embedding_lookup(params, ids; partition_strategy="mod", name="", validate_indices=true)
Looks up values of ids
in params
. Currently only supports one Tensor
in params
.
Args:
params
: A list ofTensor
s of the same type and which can be concatenated along their first dimension.ids
: ATensor
ofInt32
orInt64
ids to be looked up inparams
.partition_strategy
: If"mod"
(default), assign each id to partitionp = id % len(params)
. If"div"
, assign each id contiguously.name
: An optional name for the operation.validate_indices
: Iftrue
(default), make sure the indices are valid.
Recurrent neural nets
nn.rnn
nn.dynamic_rnn
nn.zero_state
nn.output_size
nn.zero_state
Nonlinearities
nn.relu
nn.relu6
nn.elu
nn.softplus
nn.softsign
nn.softmax
nn.sigmoid
nn.tanh
Losses
TensorFlow.nn.l2_loss
— Function.l2_loss(t)
Computes half the L2-norm of a Tensor
t
, without taking the square root.
Regularizations
TensorFlow.nn.dropout
— Function.dropout(x, keep_prob; noise_shape=nothing, seed=0)
Keeps each element of x
with keep_prob
, scaled by 1/keep_prob
, otherwise outputs 0
. This computes dropout.
Args:
x
: ATensor
.keep_prob
: Probability that each element is kept.noise_shape
: Shape for randomly generated keep/drop flags.seed
: Integer used to seed the RNG. Defaults to0
.
Evaluations
TensorFlow.nn.top_k
— Function.top_k(input, k=1; sorted=true)
Finds values and indices of the top k
largest entries of input
in its last dimension.
Args:
input
: One or more dimensionalTensor
with last dimension at least sizek
.k
: Number of largest elements ofinput
to look for. Defaults to 1.sorted
: Iftrue
(default), the returned values will be sorted in descending order.
TensorFlow.nn.in_top_k
— Function.in_top_k(predictions, targets, k)
Determines whether the targets
are in the top k
predictions
. Outputs a batch_size
(first dimension of predictions
) array of boolean values.
Args:
predictions
: Two dimensionalTensor
.targets
: ATensor
.k
: Number of elements to look at for comparison.
Logic
TensorFlow.Ops.logical_and
— Function. logical_and(x, y)
TensorFlow.Ops.logical_not
— Function. logical_not(x)
TensorFlow.Ops.logical_or
— Function. logical_or(x, y)
TensorFlow.logical_xor
— Function.logical_xor(x, y; name="LogicalXor")
Returns the truth value of x
XOR y
element-wise.
NOTE: LogicalXor
supports broadcasting. More about broadcasting here
Args:
x
: ATensor
of typebool
.y
: ATensor
of typebool
.name
: A name for the operation (optional).
Returns: A Tensor
of type bool
.
Control flow
identity
TensorFlow.make_tuple
TensorFlow.group
TensorFlow.no_op
cond